Saturday, May 18, 2013

Bernanke: "Economic Prospects for the Long Run"

by Calculated Risk on 5/18/2013 12:47:00 PM

This is a from commencement speech today by Fed Chairman Ben Bernanke: Economic Prospects for the Long Run

Now here's a question--in fact, a key question, I imagine, from your perspective. What does the future hold for the working lives of today's graduates? The economic implications of the first two waves of innovation, from the steam engine to the Boeing 747, were enormous. These waves vastly expanded the range of available products and the efficiency with which they could be produced. Indeed, according to the best available data, output per person in the United States increased by approximately 30 times between 1700 and 1970 or so, growth that has resulted in multiple transformations of our economy and society.1 History suggests that economic prospects during the coming decades depend on whether the most recent revolution, the IT revolution, has economic effects of similar scale and scope as the previous two. But will it?

I must report that not everyone thinks so. Indeed, some knowledgeable observers have recently made the case that the IT revolution, as important as it surely is, likely will not generate the transformative economic effects that flowed from the earlier technological revolutions.2 As a result, these observers argue, economic growth and change in coming decades likely will be noticeably slower than the pace to which Americans have become accustomed. Such an outcome would have important social and political--as well as economic--consequences for our country and the world.

This provocative assessment of our economic future has attracted plenty of attention among economists and others as well. Does it make sense? Here's one way to think more concretely about the argument that the pessimists are making: Fifty years ago, in 1963, I was a nine-year-old growing up in a middle-class home in a small town in South Carolina. As a way of getting a handle on the recent pace of economic change, it's interesting to ask how my family's everyday life back then differed from that of a typical family today. Well, if I think about it, I could quickly come up with the Internet, cellphones, and microwave ovens as important conveniences that most of your families have today that my family lacked 50 years ago. Health care has improved some since I was young; indeed, life expectancy at birth in the United States has risen from 70 years in 1963 to 78 years today, although some of this improvement is probably due to better nutrition and generally higher levels of income rather than advances in medicine alone. Nevertheless, though my memory may be selective, it doesn't seem to me that the differences in daily life between then and now are all that large. Heating, air conditioning, cooking, and sanitation in my childhood were not all that different from today. We had a dishwasher, a washing machine, and a dryer. My family owned a comfortable car with air conditioning and a radio, and the experience of commercial flight was much like today but without the long security lines. For entertainment, we did not have the Internet or video games, as I mentioned, but we had plenty of books, radio, musical recordings, and a color TV (although, I must acknowledge, the colors were garish and there were many fewer channels to choose from).

The comparison of the world of 1963 with that of today suggests quite substantial but perhaps not transformative economic change since then. But now let's run this thought experiment back another 50 years, to 1913 (the year the Federal Reserve was created by the Congress, by the way), and compare how my grandparents and your great-grandparents lived with how my family lived in 1963. Life in 1913 was simply much harder for most Americans than it would be later in the century. Many people worked long hours at dangerous, dirty, and exhausting jobs--up to 60 hours per week in manufacturing, for example, and even more in agriculture. Housework involved a great deal of drudgery; refrigerators, freezers, vacuum cleaners, electric stoves, and washing machines were not in general use, which should not be terribly surprising since most urban households, and virtually all rural households, were not yet wired for electricity. In the entertainment sphere, Americans did not yet have access to commercial radio broadcasts and movies would be silent for another decade and a half. Some people had telephones, but no long-distance service was available. In transportation, in 1913 Henry Ford was just beginning the mass production of the Model T automobile, railroads were powered by steam, and regular commercial air travel was quite a few years away. Importantly, life expectancy at birth in 1913 was only 53 years, reflecting not only the state of medical science at the time--infection-fighting antibiotics and vaccines for many deadly diseases would not be developed for several more decades--but also deficiencies in sanitation and nutrition. This was quite a different world than the one in which I grew up in 1963 or in which we live today.

The purpose of these comparisons is to make concrete the argument made by some economists, that the economic and technological transformation of the past 50 years, while significant, does not match the changes of the 50 years--or, for that matter, the 100 years--before that. Extrapolating to the future, the conclusion some have drawn is that the sustainable pace of economic growth and change and the associated improvement in living standards will likely slow further, as our most recent technological revolution, in computers and IT, will not transform our lives as dramatically as previous revolutions have.

Well, that's sort of depressing. Is it true, then, as baseball player Yogi Berra said, that the future ain't what it used to be? Nobody really knows; as Berra also astutely observed, it's tough to make predictions, especially about the future. But there are some good arguments on the other side of this debate.

First, innovation, almost by definition, involves ideas that no one has yet had, which means that forecasts of future technological change can be, and often are, wildly wrong. A safe prediction, I think, is that human innovation and creativity will continue; it is part of our very nature. Another prediction, just as safe, is that people will nevertheless continue to forecast the end of innovation. The famous British economist John Maynard Keynes observed as much in the midst of the Great Depression more than 80 years ago. He wrote then, "We are suffering just now from a bad attack of economic pessimism. It is common to hear people say that the epoch of enormous economic progress which characterised the 19th century is over; that the rapid improvement in the standard of life is now going to slow down."3 Sound familiar? By the way, Keynes argued at that time that such a view was shortsighted and, in characterizing what he called "the economic possibilities for our grandchildren," he predicted that income per person, adjusted for inflation, could rise as much as four to eight times by 2030. His guess looks pretty good; income per person in the United States today is roughly six times what it was in 1930.

Second, not only are scientific and technical innovation themselves inherently hard to predict, so are the long-run practical consequences of innovation for our economy and our daily lives. Indeed, some would say that we are still in the early days of the IT revolution; after all, computing speeds and memory have increased many times over in the 30-plus years since the first personal computers came on the market, and fields like biotechnology are also advancing rapidly. Moreover, even as the basic technologies improve, the commercial applications of these technologies have arguably thus far only scratched the surface. Consider, for example, the potential for IT and biotechnology to improve health care, one of the largest and most important sectors of our economy. A strong case can be made that the modernization of health-care IT systems would lead to better-coordinated, more effective, and less costly patient care than we have today, including greater responsiveness of medical practice to the latest research findings.4 Robots, lasers, and other advanced technologies are improving surgical outcomes, and artificial intelligence systems are being used to improve diagnoses and chart courses of treatment. Perhaps even more revolutionary is the trend toward so-called personalized medicine, which would tailor medical treatments for each patient based on information drawn from that individual's genetic code. Taken together, such advances could lead to another jump in life expectancy and improved health at older ages

Other promising areas for the application of new technologies include the development of cleaner energy--for example, the harnessing of wind, wave, and solar power and the development of electric and hybrid vehicles--as well as potential further advances in communications and robotics. I'm sure that I can't imagine all of the possibilities, but historians of science have commented on our collective tendency to overestimate the short-term effects of new technologies while underestimating their longer-term potential.

Finally, pessimists may be paying too little attention to the strength of the underlying economic and social forces that generate innovation in the modern world. Invention was once the province of the isolated scientist or tinkerer. The transmission of new ideas and the adaptation of the best new insights to commercial uses were slow and erratic. But all of that is changing radically. We live on a planet that is becoming richer and more populous, and in which not only the most advanced economies but also large emerging market nations like China and India increasingly see their economic futures as tied to technological innovation. In that context, the number of trained scientists and engineers is increasing rapidly, as are the resources for research being provided by universities, governments, and the private sector. Moreover, because of the Internet and other advances in communications, collaboration and the exchange of ideas take place at high speed and with little regard for geographic distance. For example, research papers are now disseminated and critiqued almost instantaneously rather than after publication in a journal several years after they are written. And, importantly, as trade and globalization increase the size of the potential market for new products, the possible economic rewards for being first with an innovative product or process are growing rapidly.6 In short, both humanity's capacity to innovate and the incentives to innovate are greater today than at any other time in history.
CR Note: I think the pace of innovation will accelerate and I'm very optimistic about the future!